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In this work, we investigate the effect of the strains induced by axially symmetric quan-
tum dots of cylindrical, hemispherical and conical shapes in a III-nitride semiconductor 
nanowire on the band structure of the nanowire material. To study the elastic properties of 
quantum dots, a model of an elastic inclusion with eigenstrain has been used. To consider 
the influence of the free surface of the wire on the elastic fields of quantum dots, the cor-
responding boundary value problems have been solved analytically. The k·p perturbation 
method has been applied to analyze the strain induced effect on the energy band structure 
of the material. The results obtained demonstrate that the band gap width clearly depends 
on the shape of the embedded quantum dot. The effect of quantum dot strains on the elec-
tropolarization of the material possessing ferroelectric properties, was investigated. It was 
shown that the largest jump in electric charge density is achieved near the apex of the 
conical inclusion.
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1. INTRODUCTION

The III-nitride materials (AlN, GaN, InN and their solid 
solutions) have a unique combination of physical prop-
erties that ensure their demand in modern microelectron-
ics and optoelectronics. Among these properties are wide 
band gaps, high saturation drift velocity, high breakdown 
voltage, high thermal conductivity, high thermal and 
chemical stability, etc. [1]. Due to these characteristics, 
nitrides are currently considered the most promising 
material for fabricating robust high-frequency transistor 
structures capable of operating at high temperatures and 
under harsh operating conditions. Additionally, in terna-
ry semiconductors, such as InxGa1–xN, AlyGa1–yN, etc., the 
band gap width can be changed from the visible to the 
deep ultraviolet region by varying the ratio of their com-
ponents. This allows III-nitride materials to be used in the 
fabrication of light-emitting diodes, laser diodes, optical 
sensors that operate in a wide range of the electromag-
netic spectrum [2–6]. The distinguishing properties of 
III-nitride semiconductors include their large spontaneous 

polarization and large piezoelectric coefficients [7–9]. 
Strain-induced piezoelectric polarization charges lead to 
electrostatic fields of a magnitude (MV/cm) that cannot be 
neglected in nitride semiconductors.

In general, strain strongly affects the electronic prop-
erties of semiconductors; both valence and conduction 
bands can be changed due to strain [10–16]. The elastic 
properties of quantum dots in the material matrix have gar-
nered significant attention in recent studies due to their im-
portant role in materials science and technology [17–20]. 
The presence of quantum dots (QDs) in semiconductors 
has a strong influence on the electronic band structure 
through the strain generated by QDs in the surrounding 
material matrix. In terms of continuum mechanics, QDs 
are considered to be elastic inclusions with an eigenstrain 
corresponding to the mismatch coefficient between the 
lattice constant of the dots and the surrounding material 
matrix [21].

For inclusions of different shapes, the computation of 
the elastic field requires different numerical techniques. 
Among these, the elastic inclusion model proposed by Es-
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helby (see Refs. [22,23]) is a powerful tool that has been 
widely used to address a variety of elastic field problems 
involving inhomogeneities and elastic inclusions in solids. 
Furthermore, for inclusions with axial symmetry, finding 
analytical solutions can be simplified if we model the in-
clusion as infinitesimally thin disks distributed along the 
axis of symmetry of the inclusions [24,25]. The analytical 
results obtained allow for the investigation of the impact 
of the strain field of QD on the energy band structure of 
the material matrix as well as within the QD itself.

The effect of the finite size of QDs on the electronic and 
optoelectronic properties of semiconductors has also been 
studied quite fully in the past decades [26,27]. In addition, 
it was pointed out that due to the crystal lattice mismatch 
between the materials of QDs and surrounding matrix, con-
siderable elastic strains can be generated inside QDs. Such 
intrinsic strains contribute to the modification of semicon-
ductor band structure via the deformation potential [10].

In this study, we briefly analyze the elastic fields of 
QDs in the forms of cylinder, hemisphere, and cone in na-
nowire. Then we use the k·p perturbation theory approach 
to investigate the influence of strain induced by InxGa1–xN 
and AlyGa1–yN QDs on the electronic band structure of the 
GaN matrix. Additionally, we investigate strain-induced 
polarization within nitride semiconductors.

2. ELASTIC FIELD OF THE QUANTUM DOT 
IN THE WIRE

In terms of continuum mechanics, QD can be considered 
as an elastic dilatational inclusion (DI) with an eigen-
strain DI *

iiε  corresponding to the mismatch between the 
lattice constants of the dot and the surrounding material 
matrix. The problem of elastic inclusion with eigenstrain 
in a homogeneous and isotropic elastic medium originates 
from the classical problem proposed by Eshelby [22,23]. 
In this problem, we consider a DI with an eigenstrain DI *

iiε
, defined by the following expression:
DI * * ( )iiε = ε δ Ω , (1)

where 
1, ,

( )
0,

R
R
∈Ω

δ Ω =  ∉Ω
. There is no summation over i in 

DI *
iiε , i is coordinate in any orthogonal coordinate system. 

In Eq. (1) parameter *ε  (misfit parameter) is found as 
ratio (see, for example [28–30])

* d m

m

a a
a
−

ε = , (2)

where ad and am are the lattice constants for QDs and 
surrounding material matrix in the absence of strains, 
respectively.

Here, we consider QDs with axial symmetry such as 
cylinder, cone, truncated sphere, etc. To study the elastic 

properties of QDs in the nanowire, we model QDs as an 
infinite set of infinitesimally thin coaxial disks of radius c, 
uniformly distributed with a constant density ρ along the 
symmetrical axis. In this approach, the elastic field of QD 
is obtained by integrating the corresponding components 
of the elastic field of infinitesimal thin disks inside the 
nanowire, with eigenstrain d *

iiε  given by following expres-
sion [24,25,31]:

d *
01 ( )ii

rb H z z
c

 ε = − δ − 
 

, (3)

where b is a coefficient with the dimension of length, 
1, 0,

( )
0, 0

H
ζ ≥

ζ =  ζ <
 is the Heaviside step function, ( )zδ  is 

the Dirac delta function, c is the radius of the disk, and z0 
is the coordinate of disk in cylindrical coordinate sys-
tem (r, φ, z); see Fig. 1. Then the elastic field of inclusion 
is equal to the sum of the corresponding components of 
the elastic field of the disks. The eigenstrain of the inclu-
sion DI *

iiε  can be found using eigenstrain (3) [24,25,31,32]:

2

1

DI * d *
0 0( , )

z

ii ii
z

r z z dzε = ε − ρ∫
2

1

*
0 01 ( ) ( ),

z

z

rbH z z dz
c

 = − δ − ρ = ε δ Ω 
 ∫  (4)

where * bε = ρ.
Therefore, the elastic field of DI can be found by inte-

gration as well. For example, total displacements DI
iu  are 

calculated by the following formula:

2

1

DI d
0 0( , )

z

i i
z

u u r z z dz= − ρ∫ . (5)

Fig. 1. The circular disk in a long cylindrical nanowire. The co-
ordinates r, φ, z in the cylindrical coordinate system are shown.
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2.1. Dilatational disk in the wire

We consider a dilatational infinitesimally thin disk (DD) 
(see Fig. 1) with eigenstrain d *

iiε  (see Eq. (3)), embedded 
in the circular wire:

The fields of total displacements d
iu , elastic strains d

ijε  
and stresses d

ijσ  of the DD in the cylinder are represented 
by the sums of the corresponding DD fields in an infinite 
elastic medium ( d

iu∞ , d
ij

∞ ε , d
ij

∞ σ ) and some additional 
(image) fields ( im

iu , im
ijε , im

ijσ ) [32]:
d d im

i i iu u u∞= + , (6)
d d im

ij ij ij
∞ε = ε + ε , (7)

d d im
ij ij ij

∞σ = σ + σ , (8)

where , , ,i j r z= j . The detailed expressions of d
iu , d

ijε , 
d

ijσ  of the disk in the wire [32]:

d (1 ) (1,1;0)
2(1 )r

bu J∞ + ν
=

− ν
, (9a)

d 0u∞
j = , (9b)

d
0

(1 ) sgn( ) (1,0;0)
2(1 )z

bu z z J∞ + ν
= −

− ν
, (9c)

where 
( ) ( )00

( , ; ) ( ) / exp | | / p
m nJ m n p J J r c z z c d

∞
= κ κ −κ − κ κ∫  

are the Lipschitz-Hankel integrals [33], mJ  and nJ  are the 
Bessel functions of the first kind with the corresponding 
argument, and ν is the Poisson’s ratio.

The additional DD displacement components due to 
the free surface contribution of the wire [32]:

im
0

0

(1 )
(1 )r

b r ru C I
a a

∞+ ν  β = − β  − ν π  
∫

( ) *
1 14 (1 ) cos ,r zC v D I t I d

a a
β  β + − − β β  

 (10a)

im 0uj= , (10b)

im *
1 0 1

0

(1 ) sin ,
(1 )z

b r r r zu C I DI t I d
a a a a

∞+ ν  β β  β   = + β β    − ν π     
∫  

 (10c)

where

1C =
η

, 
2 2

1 1 0 02 ( 2 2) 2
D

I K I K− β − ν + β −−
=

ν
βη

, (11a,b)

with 2 2 2 2
0 1( 2 2)I Iη = β − β − ν + , 0 0 ( )I I= β  and 1 1( )I I= β  

are the modified Bessel functions of the first kind, 
*
1 1 ( )I I t= β , /t c a= , a is radius of the wire, 0 0 ( )K K= β  

and 1 1( )K K= β  are the modified Bessel functions of the 
second kind (the Macdonald functions).

2.2. Cylindrical quantum dot in the wire

Consider QD in the form of a finite cylinder (CyI—cylin-
drical inclusion) with radius c and height h embedded in a 
circular nanowire with radius a (see Fig. 2).

By substituting Eqs. (6), (9), and (10) into Eq. (5) we 
get the displacements of CyI in the circular nanowire. The 
solutions for the displacements, strains, and stresses of 
CyI in the circular nanowire have been found in our pre-
vious study [32,34]:

*
CyI CyI

0
0

2(1 )
(1 )r r

v a r ru u C I
v a a

∞
∞ + ε  β β = + −  − π  

∫

( )
*
1

14 (1 ) sin cos
2

t Ir h zC v D I d
a a a
β  β β + − − β β  β 

, (12a)

CyI 0uj = , (12b)
*

CyI CyI 2(1 )
(1 )z z

v au u
v

∞ + ε
= +

− π

*
1 0 1

0

sin sin
2

r r r h zC I DI t I d
a a a a a

∞  β β  β β   × + β        
∫ , (12c)

where h is the height of CyI (Fig. 2). Here other designations 
are the same as in Eqs. (11a,b).

The elastic strains CyI
ijε  and stresses CyI

ijσ  can be de-
termined from displacements CyI

iu  (12) according to the 
following relations:

• for elastic strains
CyI

CyI * ( )r
rr

u
r

∂
ε = − ε δ Ω

∂
, (13a)

CyI
CyI * ( )ru

rjjε = − ε δ Ω , (13b)

CyI
CyI * ( )z

zz
u
z

∂
ε = − ε δ Ω

∂
, (13c)

CyI CyI
CyI 1

2
r z

rz
u u
z r

 ∂ ∂
ε = + ∂ ∂ 

, (13d)

Fig. 2. A finite cylindrical quantum dot (CyI) in the circular 
nanowire. The coordinates r, φ, z in the cylindrical coordinate 
system are shown.
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CyI CyICyI
CyI 1 1

2
r

r

u uu
r r r

j j
j

 ∂ ∂
ε = + −  ∂ ∂j 

, (13e)

CyICyI
CyI 1 1

2
z

z

uu
r z

j
j

 ∂∂
ε = +  ∂j ∂ 

; (13f)

• for elastic dilatational strain:
CyI CyI CyI CyI

rr zzjj∆ = ε + ε + ε ; (14)

• for stresses:

CyI CyI CyI2
1 2ij ij ijG ν σ = ε + ∆δ − ν 

, (15)

where 
1, ,
0,ij

i j
i j
=

δ =  ≠
 is Kronecker symbol, G is shear 

modulus, ν is Poisson’s ratio.
The total displacements CyI

iu∞  of the CyI in an infinite 
medium were found earlier in Refs. [24,25] in the follow-
ing form:

• inside the CyI 2(| | , )hz r c< <

*
CyI in (1) (2)(1 ) (1,1; 1) (1,1; 1)

2(1 )r
c ru J J

c
∞ + ν ε  = − − − − − ν  

, 

 (16a)
CyI in 0u∞

j = , (16b)
*

CyI in (1) (2)(1 ) sgn( ) (1,0; 1) (1,0; 1)
2(1 )z

cu z J J∞ + ν ε  = − − − − ν
; 

 (16c)

• outside the CyI 2(| | hz >  or 2| | , )hz r c≤ >

*
CyI out (1 )

2(1 )r
cu∞ + ν ε

=
− ν

(3) (2)
2

(1) (2)
2

(1,1; 1) (1,1; 1), | | ,

(1,1; 1) (1,1; 1), | | ,

h

h

J J z
c J J z r c
r

 − − − >
×

− − − − ≤ >

, (17a)

CyI out 0u∞
j = , (17b)

*
CyI out (1 ) sgn( )

2(1 )z
cu z∞ + ν ε

=
− ν

(3) (2)
2

(1) (2)
2

(1,0; 1) (1,0; 1), | | ,

(1,0; 1) (1,0; 1), | | ,

h

h

J J z

J J z r c

 − − − >×
− − − ≤ >

. (17c)

Here the Lipschitz-Hankel integrals 
( )

0
( , ; ) ( ) ( / ) ll p

m nJ m n p J J r c e d
∞ −κξ= κ κ κ κ∫  with 1, 2, 3,l =  

are used with 1 2( | |) /h z cξ = − , 2 2( | |) /h z cξ = + , and 
3 2(| | ) /hz cξ = − .

From the expressions obtained for the displace-
ments (13), (16), and (17) of CyI we can easily determine 
the strains as well as the hydrostatic strain. The total hy-
drostatic strain is determined by the following expression:

CyI CyI CyI *
CyI (1 )

1
r r zu u u v

r r z v
∂ ∂ + ε

∆ = + + =
∂ ∂ −

*
0 1

0

4( ) (1 2 ) ( ) sin( ) cos( )
2

r h zv C I t I d
a a a

∞ β β β
× δ Ω + − β π 

∫ . 

 (18)

Contour plots of the total hydrostatic strains induced 
by CyI in the nanowire are shown in Fig. 3.

Fig. 3. The total hydrostatic strain maps of the CyI in a circular nanowire: (a) In0.2Ga0.8N dot in GaN matrix and (b) Al0.2Ga0.8N dot in 
GaN matrix. The parameters used for calculations are as follows: nanowire radius a = 10 nm; the base radius and height of CyI are 
c = 5 nm and h = 10 / 3 nm, respectively; the Poisson’s ratio of GaN ν = 0.234; misfit parameters of In0.2Ga0.8N and Al0.2Ga0.8N dots are 

* 0.021=ε  and –0.0058, respectively.
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2.3. Truncated spherical quantum dot in the 
nanowire

QDs in truncated spherical form also frequently appear in 
the fabrication of nanomaterials. We consider a truncated 
spherical quantum dot (SI) with a radius R0 (θ1 < θ0 < θ2) 
coaxially buried in the circular nanowire with radius a and 
infinite length (Fig. 4). The eigenstrain DI *

iiε  of SI defined 
according to Eq. (1).

Then it can be considered that QDs are formed from 
infinitesimal dilatational thin disks with the radius varying 
according to a specific rule 0 0sinc R= θ  [25] and distrib-
uted along the symmetrical axis of the disk with constant 
density ρ. The displacements SI

iu  of SI obtained by sub-
stituting Eqs. (6), (9), and (10) into Eq. (5). The displace-
ment components of SI in infinite space can be found in 
Ref. [25]. The additional parts of the displacements of SI 
are calculated according to the following expressions:

*
SI SI (1 )

(1 )r ru u∞ + ν ε
= +

− ν π

( )0 1
0

4 (1 )r r rC I C D I d
a a a

∞  β β β    × − + − ν + β β        
∫

( )
2

1

0
01

( )
cos

z

z

z z
dz

a
t I t

β −
× β∫ , (19a)

SI 0uj= , (19b)
*

SI SI
1 0

0

(1 )
(1 )z z

r r ru u C I D I d
a a a

∞
∞ + ν ε  β β    = + + β β    − ν π     

∫

( )
2

1

0
01

( )
sin

z

z z z
dz

a
t I t

β −
× β∫ . (19c)

Coefficients C and D are determined according to 
Eqs. (11), (12) and /t c a= . To calculate the integrals: 

( )2

1

0
1 0cos

( )z

z
t

z
t

z
dz

a
I

β −
β∫  and ( )2

1

0
1 0

( )
sin

z

z
t

z
t

z
dz

a
I

β −
β∫  

let us express the modified Bessel functions of the first 
kind ( )nI x  [35], sin ( )x  and cos ( )x  in the form of a series

( )
2

1

0
01

( )
cos cos sin

z

z

z z z zdz
a a a

t I t
β − β β

Α +β Λ=∫ , (20a)

( )
1

2
0

01
( )

sin sin cos
z

z

z z z zdz
a a a

t I t
β − β β

= Αβ −Λ∫ , (20b)

with
2 21 2

0
0 1 2

0 2 !( 1)!

kk

k
k

R
R

ak k

++∞

+
=

 Α =  +  

β∑
2

1

22
2 2 10

0 0 0
0

( 1) (1 )
(2 )!

mm m
m k

m

R
d

m a

µ∞
+

= µ

− β  × µ −µ µ 
 

∑ ∫ , (21a)

2 21 2
0

0 1 2
0 2 !( 1)!

kk

k
k

R
R

ak k

++∞

+
=

 Λ =  +  

β∑
2

1

2 12 1
2 1 2 10

0 0 0
0

( 1) (1 )
(2 1)!

mm m
m k

m

R
d

m a

+ µ+∞
+ +

= µ

− β  × µ −µ µ +  
∑ ∫ , (21b)

where 0 0cosµ = θ , cosµ = θ, 1 1cosµ = θ , 2 2cosµ = θ , 
z R= µ, 0 0 0z R= µ ,

Fig. 4. The truncated spherical quantum dot (SI) with radius R0 
embedded in the circular nanowire with radius a. The cylindrical 
coordinates r, φ, z are shown.
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+

µ
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
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and 1 1

0
( , ) (1 )m kB m k x x dx

µ − −
µ = −∫  is the incomplete Beta 

function [36].
The displacements of the SI in an infinite medium SI

iu∞  
can be written in the following form [25]:

• inside sphere ( 0R R< )

0

* 1
SI 0

1 0

(1 ) ( )
2(1 ) ( 1)

k
k

r kkR R
k

R P Ru L
k k R

∞
∞

<
=

+ ν ε µ
=

− ν +∑ , (22a)

0

SI 0
R R

u∞
j <

= , (22b)

0

*
SI 0(1 )

2(1 )z R R

R
u∞

<

+ ν ε
=

− ν
2 1

0

1 2

0

2

0

1

2

1
1 0

1

2 2
2 1

2
2

,
1, ) ( ) ,(

2
,

1+

z z
R

k
z z

k

z

kR

z

k
k

R
z

z z
Rz z P L

k R
z z z

−

− −

−

∞

=

  >
    × < + µ 
  
 < < 

−

 

µ µ



∑  

 (22c)

• outside sphere ( 0R R> )

0

* 1
SI 10 0

1
1

(1 ) 1 ( )
2(1 ) ( 1)

k

r k kkR R
k

R R
u P L

k k R

+∞
∞

+>
=

+ ν ε
= µ

− ν +∑ , (23a)

0

SI 0
R R

u∞
j >

= , (23b)

0

* 1
SI 0 0

1
1

(1 ) 1 ( )
2(1 ) 1

k

z k kkR R
k

R R
u P L

k R

+∞
∞

+>
=

+ ν ε
= − µ

−ν +∑ , (23c)

where 
2 1 1 2 2 2( ) ( ) ( ) ( )( 1)

2 1 1 2
k k k k
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k k
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                            1 2 1 2 2 2( ) ( ) ( ) ( )
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k k k kP P P P
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+ +µ − µ − µ + µ + + 
;

1 0 1cosz R= θ , 2 0 2cosz R= θ ; ( )kP µ  are Legendre polyno-
mials; associated Legendre polynomials are defined as 

( )1/1 22) ( 1) 1 /( ( )n nP dP dµ = − −µ µ µ .

From the Eqs. (19), (22), and (23) of displacements 
we can determine the strain, stresses, and total hydrostatic 
strain of the dot by using the Eqs. (14), (15). The total 
hydrostatic strain of SI is determined by the following ex-
pression:

SI SI SI *
SI (1 )

1
r r zu u u

r r z
∂ ∂ + ν ε

∆ = + + =
∂ ∂ − ν

0
0

2(1 2 )( ) cos sin ,r z zC I d
a a a a

∞ − ν β β β  × δ Ω + Α +Λ β β   π    
∫  

 (24)

where Α and Λ are functions of β determined by 
Eqs. (21a,b). The total hydrostatic strain contour maps of 
the hemispherical dot are shown in Fig. 5.

2.4. Conical quantum dot in the circular nanowire

Consider a conical quantum dot (CI—conical inclusion) 
embedded in the circular nanowire, as shown in Fig. 6, 
with eigenstrain DI *

iiε  defined according to Eq. (1). To de-
termine the displacements, strains, and stresses of the dot, 
we use the same approach as for CyI and SI in nanowire 
(see Sections 2.2 and 2.3). In this method, the quantum dot 
is modeled by thin circular disks with eigenstrain, defined 
by Eq. (3) with a radius of 0 0sinRc = θ , with 0 constθ = , 
and radius R0 varying according to the position z0 of the 

Fig. 5. The total hydrostatic strain maps of hemispherical QD in the circular nanowire: (a) In0.2Ga0.8N dot in GaN nanowire, (b) Al0.2Ga0.8N 
dot in GaN nanowire. The parameters used for the calculations: nanowire radius a = 10 nm, radius of the sphere R0 = 5 nm, Poisson’s ratio 
of GaN ν = 0.234; misfit parameters of In0.2Ga0.8N and Al0.2Ga0.8N dots are * 0.021=ε  and –0.0058, respectively.
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disks (see Fig. 6). The total displacements of CI are de-
termined from disks by substituting Eqs. (6), (9), and (10) 
into Eq. (5).

The displacement components corresponding to CI in 
infinite space have been previously studied in our earlier 
research [37]. The additional displacement components 
due to the contribution of the nanowire's free surface con-
dition are determined by the following expressions:

*
CI CI (1+ )

(1 )r ru u∞ ν ε
= +

− ν π

( )0 1
0

4 (1 )+r r rC I C D I d
a a a

∞  β β β    × − + − ν β β        
∫
0

0
01

(
(

)
)cos

h

z z
dz

a
t I t

−

β −
× β∫ , (25a)

CI 0uj= ,  (25b)
*

CI CI
1 0

0

(1+ )
(1 )z z

r r ru u C I D I d
a a a

∞
∞ ν ε  β β    = + + β β    − ν π     

∫
0

0
01

(
(

)
)sin

h

z z
dz

a
t I t

−

β −
× β∫ . (25c)

To calculate the integrals 
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β∫ , let us express the modi-

fied Bessel functions ( )nI x  [35], sin (x), cos (x) in the form 
of a series. We have
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where 1 2 1 2( , ,..., ; , ,..., ; )m n m nF c c c d d d x  is the generalized 
hypergeometric function [38] which can be written via 
series:

1
1 2 1 2

0 1
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( , ,..., ; , ,..., ; )

( ) ...( ) !

k
k m k
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= ∑ .

Here (c)k and (d)k are Pochhammer symbols
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0
( ) z tz t e dt

∞ − −Γ = ∫  is Gamma function.

The displacements CI
iu∞  of the CI in an infinite medi-

um were found in Ref. [37] in the following form:
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Fig. 6. The conical QD with height h and base radius rb is embed-
ded in the circular nanowire with radius a. The coordinates in the 
cylindrical coordinate system r, j.
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where / sin( / 2)a bR r= α , with α is the opening angle of 
the cone.

Then we can calculate strains and stresses of QD by 
substituting Eqs. (25), (27), and (28) into Eqs. (14), (15). 
The total hydrostatic strain of conical QD in nanowire is 
determined by the following expression

CI CI CI *
CI (1 ) 2(2 1) ( )

(1 ) 1
r r zu u u

r r z
∂ ∂ + ν ε ν −∆ = + + = δ Ω∂ ∂ − ν + ν

0
0

1 cos sinr z zC I d
a a a a

∞

Ξ + 
β β β  + β β  π   

Θ


∫ . (29)

where Ξ, Θ are functions of β determined by Eqs. (26a,b). 
The total hydrostatic strains of CI corresponding to  
In0.2Ga0.8N and Al0.2Ga0.8N dots are shown in Fig. 7.

To conveniently investigate the influence of strains on 
the electronic band structure and piezoelectric polariza-
tion of semiconductors, we need to represent strains in the 
Cartesian coordinate system according to the following 
relations [39]:

2 2

2 2

2rr r
xx

x x y y
x y

j jjε − ε + ε
ε =

+
, (30a) 

2 2

2 2

2rr r
yy

y x y x
x y

j jjε + ε + ε
ε =

+
, (30b)

zz zzε = ε , (30c)

2 2
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1 ( ( ))xy r r rrx y x y
x y j j jjε = ε − ε + ε − ε
+

, (30d)

2 2
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yz

y x

x y
jε + ε

ε =
+

, (30e)

2 2

rz z
xz

x y

x y
jε − ε

ε =
+

. (30f)

3. EFFECT OF THE STRAIN ON CONDUCTION 
AND VALENCE BAND

In this study, the dilatational InxGa1–xN and AlyGa1–yN QDs 
are buried in the GaN nanowire. Due to the difference be-
tween the lattice constants of QDs and the matrix, QDs 
will deform the lattice of the GaN matrix. This lattice de-
viation changes the lattice parameters and crystal symme-
try, thereby changing the electronic band structure of the 
matrix and QDs itself [40–42]. In general, the effect of 
strain on the electronic band structure of semiconductors 
is described using the approach proposed by Bir and Pik-
us [10], which uses k·p perturbation theory to study the 
change in electronic band structure compared to un-
strained crystals. The k·p perturbation theory formalism is 
based on the Bloch solution of the Schrodinger equation 
of ( ) ( ) exp( )nk nku iψ = ⋅r r k r , where n and k are the band 
index and wave vector of the electron, respectively. Sub-
stituting the Bloch functions into the Schrodinger equation, 
the Hamiltonian operator for the unit cell wave function can 

Fig. 7. The total hydrostatic strain maps of CI in the nanowire, (a) In0.2Ga0.8N dot in GaN matrix; (b) Al0.2Ga0.8N dot in GaN nanowire. 
The parameters used for the calculations: the radius of the nanowire a = 10 nm, the base radius and height of CI are rb = 5 nm and 
h = 10 nm, respectively; the Poisson’s ratio of GaN ν = 0.234; misfit parameters of In0.2Ga0.8N and Al0.2Ga0.8N dots are * 0.021=ε  and 
–0.0058, respectively.
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be written as a sum of the Hamiltonian for the case k = 0 

and the term is proportional to k·p with 
i

= ∇p 

. Further-

more, the set of functions 0 ( )nu r  forms a complete set of 
eigenfunctions, so all eigenfunctions ( )nku r  can be written 
as linear combination of all 0 ( )nu r , also called the Lutting-
er-Kohn representation [43,44]. Therefore, it is possible to 
apply first-order perturbation theory, with perturbations k·p 
and basis 0 ( )nu r . Bir and Pikus [10] demonstrated that the 
strain-dependent form of the Hamiltonian is essentially the 
same as the k-dependent form of the Hamiltonian.

In unstrained wurtzite GaN, there are three closely 
spaced top valence bands (VB) at the center of the Brillou-
in zone, commonly referred to as heavy-hole (HH), light-
hole (LH), and crystal-field split-off hole (CH) [44–46]. 
These VB states have atomic p-orbital character, in contrast 
to the bottom conduction band (CB), which has atomic 
s-orbital character. Since the large band gap of GaN reduc-
es the interaction of CB and VB states, the Hamiltonian for 
the strain dependence of the VB can be separately given by 
the 6×6 matrix [10,46]:

( )

* *

* *

*

*

0 0 0
0 0

0 0
0 0

0 0
0 0 0

v

F H K
G H K

H I
k

H I
K I G

K I F

 −
 

∆ − 
 − ∆ λ

ε =  
− λ ∆ 

 ∆  
 

H , . (31)

Here:

32 ;∆ = ∆  1 2 ;F = ∆ + ∆ + λ + θ  1 2 ;G = ∆ −∆ + λ + θ  
2

5 5 ;K A k D+ += + ε  6 7 6( );z zH i A k k A k D+ + += + + ε  
6 7 6( );z zI i A k k A k D+ + += − + ε  
2 2

1 2 1 2 ( );z zz xx yyA k A k D D⊥λ = + + ε + ε + ε  
2 2

3 4 3 4 ( ),z zz xx yyA k A k D D⊥θ = + + ε + ε + ε  
x yk k ik± = ± , 2 2 2

x yk k k⊥ = + , x yk k ik± = ± ,
z xz yzi±ε = ε ± ε , 2xx yy xyi±ε = ε − ε ± ε , xx yy⊥ε = ε + ε ,

where parameters Dj (j = 1,2,…,6) denote the deforma-
tion potentials VB, and Aj (j = 1,2,…,7) are equivalent 
to the Luttinger parameters [44], parameter Δ1 is the 
crystal-field parameter, while Δ2 and Δ3 are the spin-orbit 
energy parameters. The values of Dj, Δ1, Δ2, Δ3 for GaN 
with wirtzite structure are listed in Table 1. The basis for 
conventional vH  is chosen as [45]:

1
1 ,
2

u X iY= − + α , 2
1 ,
2

u X iY= − α , 3 ,u Z= α , 

 (32a–c)

4
1 ,
2

u X iY= − β , 5
1 ,
2

u X iY= − + β , 6 ,u Z= β , 

 (32d–f)

here, X , Y , and Z  have the symmetry properties of 
the atomic px, py, and pz orbital functions. α  and β  de-

note the spin wave functions corresponding to spin up and 
spin down, respectively. The diagonalization of the ma-
trix (31) yields the three distinct VB maxima Ev,j.

The Hamiltonian for the strain dependence of CB min-
imum is given by a 2×2 matrix with basis ,S α  and , .S β  
Its single distinct eigenvalue Ec (due to strain) can be ex-
pressed as [44,47]

2 2 22 2 ( )
( )

2 2
x yz

c zz xx yy
e e

k kkE
m m ⊥⊥

+
= + + α ε + α ε + ε







 , (33)

where kx, ky, kz are x, y, z-components of wave vector; ,⊥α  
α


 and em


, em ⊥ denote the CB deformation potentials and 
electron effective mass, respectively. Here we only con-
sider the ground energy state (k = 0), so Eq. (33) is re-
duced to the following expression

0
( )c zz xx yyE

⊥=
= α ε + α ε + ε

k 

. (34)

The values of α


 and ,⊥α  for GaN with wurtzite structure 
are listed in Table 1.

4. POLARIZATION EFFECTS IN NITRIDE 
SEMICONDUCTORS

For the wurtzite structure the arrangement is ABABAB 
along the [0001] direction, while for the zincblende struc-
ture the arrangement is ABCABC along the [001] direc-
tion, where A, B, and C refer to allowed sites of the III-N 
pairs of the closed-packed layers [48].

The presence of electric polarization is directly relat-
ed to the symmetry of the crystals, for the wurtzite struc-
ture each group-III is tetrahedral coordinated to four ni-
trogen atoms. In the absence of an external electric field, 
macroscopic polarization is the sum of the spontaneous 
polarization of the equilibrium structure Psp and the 
strain-induced polarization Ppz. Nitride semiconductors 
with wurtzite structure exhibit a single polar axis, name-
ly the [0001] axis. Therefore, the wurtzite phase has a 

Table 1. Band structure parameters for wurtzite GaN [47].

Parameters Values (eV)
Eg 3.479
∆cr 0.010
∆SO 0.015

1 cr∆ = ∆ 0.022

2 3 SO / 3∆ = ∆ = ∆ 0.005

||α –44.5

⊥α –44.5
D1 –41.4
D2 –33.3
D3 8.2
D4 –4.1
D5 –4.7
D6 –7.5
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spontaneous electrical polarization along the [0001] di-
rection even when in equilibrium, which is different from 
the mixed semiconductors with a zinc mixed structure. 
Because of the appearance of strain around QDs due to 
lattice deflection such deformation of the unit cell leads 
to additional piezoelectric polarization. By consider-
ing the symmetry of the P63mc space group of wurtzite 
III-nitrides, the piezoelectric polarization is related to 
the deformation, which is expressed by the following ex-
pression [48]:

15
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e
e

e e e
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 

= ε 
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, (35)

with the elements ije  of the piezoelectric tensor in Voigt 
notation; see Ref. [49]. For example, values of elements of 
the piezoelectric tensor of III-nitride are shown in Table 2. 
We note that the relations of Eq. (35) are given in the natu-
ral N-coordinate system relative to the c axis. Any spatial 
variation in total polarization P leads to a fixed volume 
charge density:

ρ = −∇ ⋅P , (36)

where 
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

i j k  is divergence operator.

For the step change in polarization at the interface, 
Eq. (36) is modified to give the fixed surface charge 
density [41]

q = − ⋅∆n P , (37)

where n is the normal vector to the free surface or inter-
face, and ∆P is the total polarization change.

5. DESCRIPTION OF THE MODEL

In this study, we consider InxGa1–xN or AlyGa1–yN QDs in 
the form of finite cylinder, truncated sphere, and cone in 
the circular nanowire, as shown in Fig. 8.

In our model, InxGa1–xN, AlyGa1–yN QDs, with x and y 
varying in the range of 0.2 to 0.5, are embedded in a circu-
lar GaN nanowire with a radius of a = 10 nm. The selected 
QDs have a volume of 250π / 3 nm3 and radius of base of 
the dots rb = 5 nm.

The effective misfit parameter f for wurtzite semicon-
ductors can be estimated by considering the difference 
in crystal lattice translations in the basal plane and in the 
z-axis direction. The lattice parameters of III-nitrides are 
given in Table 3. For such materials, one can introduce a 
pair of misfit parameters fa and fc, given by

d m
a

m

a a
f

a
−

= , d m
c

m

c c
f

c
−

= , (38a,b)

where am, ad, and cm, cd are the a and c wurtzite lattice pa-
rameters of the matrix and QD, respectively. The effective 
dots/matrix mismatch can then be defined as

* 2
3

a cf f
f

+
ε = = . (39)

Table 2. Piezoelectric coefficients (given in C·m–2) of GaN with the 
wurtzite structure [29].

Piezoelectric coefficients GaN
e33 0.73
e31 −0.49
e15 −0.40

Fig. 8. Schematic depiction of InxGa1–xN QDs or AlyGa1–yN QDs in shape of cylinder (a), truncated sphere (b), and cone (c) in GaN 
nanowire. Nanowire’s axis is oriented along [0001] crystallographic direction (c-axis).

Table 3. Crystal lattice parameters (given in Å) of III-nitrides 
with wurtzite structure (at 300 K) [52].

Lattice parameters AlN GaN InN
a 3.112 3.189 3.533
c 4.982 5.186 5.693
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The values of effective lattice misfit parameter f of InxGa1–xN 
and AlyGa1–yN dots in GaN matrix are shown in Table 4.

For the crystal lattice parameters a and c of wurtz-
ite structures InxGa1–xN, AlyGa1–yN, Vegard’s law is ap-
plied [53,54]:

1 InN GaNIn Ga N (1 )
x x

a x a x a
−

= ⋅ + − ⋅ , (40a)

1 InN GaNIn Ga N (1 )
x x

c x c x c
−

= ⋅ + − ⋅ , (40b)

1Al AlN GaNGa N (1 )
y y

a y a y a
−

= ⋅ + − ⋅ , (40c)

y 1 yAl AlN GaNGa N (1 )c y c y c
−

= ⋅ + − ⋅ . (40d)

With the support of Eqs. (40), we can calculate the lat-
tice constants of InxGa1–xN and AlyGa1–yN. The results are 
shown in the Table 5.

The expressions of the elastic field of QDs in the 
nanowire (as mentioned in Section 2) are applied to an 
isotropic elastic medium. However, wurtzite GaN is elas-
tically anisotropic. Therefore, we use the effective Pois-
son’s ratio according to the expression, which was derived 
by averaging Poisson’s ratios along the three mutually 
perpendicular axes chosen in characteristic crystallo-
graphic directions, as in Ref. [29]:

13 12 13

33 11

1
3

s s s
s s

 +
ν = − + 

 
, (41)

where sij are the elastic compliances for GaN. Using the 
elastic constants from Ref. [55] we obtain 0.234ν = .

6. THE INFLUENCE OF SURFACE EFFECTS 
ON THE BAND STRUCTURE

The change of the VB structure is nonlinear with strain 
as these energies represent the eigenvalues of a 6×6 
Hamiltonian in the k·p calculations (see Section 3 for 
details). We will examine the shifts of the CB and VB 

edges due to QD strain field by utilizing the k·p per-
turbation approach developed by Bir and Pikus [10] and 
employing the corresponding deformation potentials for 
GaN [47]. 

Under the influence of strain, both CB and VB are 
strongly shifted. The positions of heavy-hole (HH), light-
hole (LH), and crystal-field split-off hole (CH) change 
compared to their equilibrium positions and can even 
cross each other. Therefore, to simplify we label the in-
dividual VBs as top, middle, and bottom VB according 
to their energy, with the top VB being closest to the CB 
bottom.

The dependence of CB on strain is determined by 
Eq. (33). We see that CB bottom depends linearly on hy-
drostatic strain. This means that it depends on the free sur-
face conditions and the interaction of the free surface with 
the quantum dots buried under it. The dependence of the 
VBs on strains (see Eqs. (31)) is more complex than that 
of CB.

Fig. 9 shows edge of CB shift due to strain for In0.2Ga0.8N 
and Al0.2Ga0.8N dots. The results clearly reveal two oppo-
site trends. For In0.2Ga0.8N dots in GaN matrix, outside 
the dot, CB edge decreases by hundreds of meV. Calcu-
lations indicate that the most significant reduction in the 
band gap occurs at the nanowire surface, specifically at 
the intersection of the plane perpendicular to the nanowire 
axis that divides the dot into two equal-volume parts (see 
Figs. 9a–c). Similarly, for Al0.2Ga0.8N dots in GaN matrix, 
the edge of CB outside the dot increases by tens of meV. 
This increase is also most pronounced at the nanowire sur-
face, at the intersection of the plane perpendicular to the 
nanowire axis that divides the dot into two equal-volume 
regions (see Figs. 9d–f).

For points outside the dots, near the nanowire axis, 
the band gap tends to decrease for both In0.2Ga0.8N 
and Al0.2Ga0.8N dots. However, along the wire surface, 
the band gap decreases for the In0.2Ga0.8N dot. For the  
Al0.2Ga0.8N dot, the behavior is more complex, with a 
slight increase in band gap. The change of the band gap 
depends on the shape of QDs; see Fig. 10.

7. STRESSOR-INDUCED POLARIZATION 
CHARGES

The fixed polarized charge density in the system is relat-
ed to the variation of total polarization P with position. 
Total polarization P includes spontaneous polarization 
Psp and piezoelectric polarization Ppz. The piezoelectric 
polarization vector Ppz at an arbitrary point is determined 
according to Eq. (34). The fixed polarized charge den-
sity is determined by the expression: ( , , )x y zρ = −∇P . 
The fixed polarized charge density approaches the range 

10 310 | | /cme  when approaching the surface of QDs; see 

Table 4. Effective lattice misfit parameter f  for wurtzite III-nitrides.

Material
Misfit parameter f

Quantum dots Matrix
GaN AlN 0.029

In0.2Ga0.8N GaN 0.021
In0.5Ga0.5N GaN 0.050
Al0.2Ga0.8N GaN –0.006
Al0.5Ga0.5N GaN –0.015

Table 5. Crystal lattice parameters (given in Å) of InxGa1–xN and 
AlyGa1–yN with wurtzite structure (at 300 K).

Lattice 
parameters In0.2Ga0.8N In0.5Ga0.5N Al0.2Ga0.8N Al0.5Ga0.5N

a 3.258 3.361 3.174 3.151
c 5.287 5.440 5.145 5.084
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Fig. 10. This value is quite small compared to the electron 
density of GaN which is approximately 2.3·1018 cm–3 (at 
300 K); see Ref. [52]. This value is also much smaller than 
the case of ellipsoidal inclusion and point stressor in half-
space; see Ref. [29].

The contour plot of the induced charge caused by the 
strain of QD in the form of a finite cylinder, hemisphere, 
and cone in the nanowire is shown in Fig. 11.

8. DISCUSSION

Figs. 4–6, and 12 demonstrate that the influence of the sur-
face on the hydrostatic strain just beneath it depends on the 
shape of QD. This effect is strongest for CyI, followed by 

the SI, and weakest for CI (see Fig. 12). Indeed, for CyI, 
the disk radius remains constant, and the ratio between the 
dot radius c and the nanowire radius a, denoted as t = c/a, 
is constant. In contrast, for SI dot and CI dot, the radius 
c varies along the symmetry axis, so the ratio t = c/a also 
changes along this direction and is always smaller than in 
the cylindrical case. As a result, the surface effect on the 
hydrostatic strain inside the nanowire is strongly depen-
dent on the shape of the embedded dot. Consequently, the 
edge of CB is also shape-dependent, as shown in Figs. 9 
and 13.

The presence of strain induced by the embedded dot 
simultaneously affects both CB (see Eq. (33)) and VB (see 
Eq. (31)) of the material. As a result, the band gap of the 

Fig. 9. The contour maps for GaN CB edge changes def
cE∆  (given in meV) due to strain fields of CyI in the nanowire: (a) In0.2Ga0.8N dot 

in GaN wire, and (d) Al0.2Ga0.8N dot in GaN wire; hemispherical quantum dots in the nanowire: (b) In0.2Ga0.8N dot in GaN wire and (e) 
Al0.2Ga0.8N  dot in GaN wire; CI in the nanowire: (c) In0.2Ga0.8N dot in GaN wire and (f) Al0.2Ga0.8N dot in GaN wire. Parameters for cal-
culation: radius of nanowire a = 10 nm; the volume of dots is 250 / 3π  nm3; the base radius of the dots is c = 5 nm; average Poisson’s ra-
tio of GaN wurtzite 0.234ν = ; the misfit parameter of In0.2Ga0.8N and Al0.2Ga0.8N dots in GaN are * 0.021ε =  and –0.0058, respectively.
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Fig. 10. The change of the band gap def
gE∆  of GaN along free surface of the wire due to the presence of the In0.2Ga0.8N (a–c) and 

Al0.2Ga0.8N (d–f) QDs. Parameters for calculation: radius of nanowire a = 10 nm; the selected quantum dots have a volume of 
250 / 3π  nm3; the radius of the base c = 5 nm; average Poisson’s ratio of GaN wurtzite 0.234ν = ; the misfit parameter of In0.2Ga0.8N 
and Al0.2Ga0.8N dots in GaN are * 0.021ε =  and –0.0058, respectively.

Fig. 11. Contour maps for the fixed polarization charge density are given in unit of 1010 |e|/cm3 for In0.2Ga0.8N QDs in GaN nanowire: 
(a) cylinder, (b) hemisphere, (c) cone with the same volume and base radius. The parameters for calculation: volume and radius of base 
of QDs are 250 / 3π  nm3 and 5 nm, respectively;  radius of the wire is 10 nm; Poisson’s ratio 0.234ν = ; misfit parameter of In0.2Ga0.8N 
dot in GaN matrix is * 0.021ε = ; the piezoelectric coefficients for GaN are given in Table 1.

Fig. 12. The distribution of hydrostatic strain along the surface of the wire caused by In0.2Ga0.8N dots embedded in the GaN nanowire: 
(a) cylindrical QD, (b) hemispherical QD, (c) conical QD. The parameters for calculations: the volume and the radius of base of QD 
are 250 / 3π  nm3 and 5 nm, respectively; the radius of the nanowire is 10 nm; average Poisson’s ratio 0.234ν =  for GaN; the misfit 
parameter of In0.2Ga0.8N dot in matrix GaN is * 0.021ε = .
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material is altered in the presence of the dot. Figs. 10a–c 
show the influence of the surface on the band gap just 
beneath the nanowire surface. Here, the variation in the 
band gap directly beneath the surface clearly depends on 
the shape of the dot, namely: 46.0def

gE∆ ≈ − , –42.8, and 
–36.0 meV for CyI, SI, and CI, respectively; correspond-
ing to a reduction in band gap width of 1.32%, 1.23%, and 
1.03% compared to unstrained GaN. The variation in band 
gap is directly related to the energy of strain of the dots. 
Furthermore, the study shows that the elastic energy of the 
dot embedded in the wire depends on the ratio t = c/a (see 
Ref. [32]). Here, it is evident that for cylindrical dots, 
t = c/a remains constant, while for SI and CI, the value 
of ratio t varies along the symmetry axis z. As previously 
mentioned, the band gap beneath the wire surface decreas-
es most significantly for CyI.

The presence of QDs in the wire gives rise to fixed 
polarized charges in the dots and in the wire. Howev-
er, the density of fixed polarized charges is quite small 
(about 1010 |e|/cm3); see Figs. 11 and 14. This charge den-
sity can be easily screened by free electrons, considering 
the usually reported unintentional n-type doping level of 
1016÷1017 |e|/cm3 in GaN. For points near the top of the 
conical QD, the fixed polarization charge density increas-
es abruptly: for In0.2Ga0.8N conical QD in GaN matrix, see 

Fig. 14a and for Al0.2Ga0.8N conical QD in GaN matrix, 
see Fig. 14b.

9. CONCLUSIONS

In this study we investigated the influence of strain 
of QDs in nanowire on electronic band structures of 
III-nitride. QDs chosen are ternary semiconductor 
compounds of III-nitride InxGa1–xN, AlyGa1–yN with 
x,y = 0.2 in wurtzite structure. We assume that the ma-
trix is isotopically homogeneous with an average Pois-
son’s ratio 0.234ν = .

The influence of the nanowire surface on the band 
gap clearly depends on the shape of the dots. This ef-
fect is related to the ratio between the dot’s and nanow-
ire’s radii. For In0.2Ga0.8N QDs with identical volumes 
and a base radius of 5 nm embedded in a GaN nanowire 
of 10 nm radius, the band gap just beneath the surface 
shows the most significant reduction for the cylindrical 
dot—up to 1.32% lower compared to the band gap of 
unstrained GaN (at 300 K). The reduction in band gap 
is related to the elastic energy of QDs embedded in the 
nanowire.

In addition, the presence of strain generated by QDs 
in the nanowire also causes the fixed polarized charge of 
the III-nitride structure around the dots to appear. How-

Fig. 13. The change of CB edge along the surface of the wire caused by In0.2Ga0.8N dots embedded in the GaN nanowire: (a) cylindrical 
QD, (b) hemispherical QD, (c) conical QD. The parameters for calculations: volume and radius of base of QD are 250 / 3π  nm3 and 
5 nm, respectively;  radius of the nanowire is 10 nm; average Poisson’s ratio is 0.234ν =  for GaN; misfit parameter of In0.2Ga0.8N dot 
in GaN matrix is * 0.021ε = .

Fig. 14. The distribution of induced fixed polarization charge density along the symmetry axis (r = 0) of the conical QD is given in units 
of 1010 |e|/cm3 for In0.2Ga0.8N dot (a) and Al0.2Ga0.8N dot (b) in GaN nanowire. The parameters for calculations: radius and height of the 
cone are c = 5 nm and h = 10 nm, respectively; Poisson’s ratio 0.234ν = ; misfit parameters are * 0.021ε = , –0.0058 for In0.2Ga0.8N and 
Al0.2Ga0.8N dots in GaN matrix, respectively; the piezoelectric coefficient for GaN are given in Table 1.
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ever, fixed polarized charge density is small compared to 
the free electron density in n-GaN. This fixed polarized 
charge density can be easily screened by free electrons in 
n-GaN.
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Влияние упругого поля квантовых точек на электронную зонную 
структуру III-нитридных проволочных полупроводников

Nguyen Van Tuyen 1,2, А.Л. Колесникова 1,3, А.Е. Романов 1

1 Университет ИТМО, Кронверкский 49, Санкт-Петербург, 197101, Россия
2 Sao Do University, No 24, Thai Hoc 2, Sao Do Ward, Chi Linh City, Hai Duong, Vietnam

3 Институт проблем машиноведения РАН, Большой пр. 61, В.О., Санкт-Петербург, 199178, Россия

Аннотация. В данной работе мы исследуем влияние деформаций, наведённых аксиально-симметричными квантовыми 
точками цилиндрической, полусферической и конической форм в полупроводниковой III-нитридной нанопроволоке, на 
зонную структуру материала нанопроволоки. Для изучения упругих свойств квантовых точек использовалась модель упругого 
включения с собственной деформацией. Для учета влияния свободной поверхности проволоки на упругие поля квантовых 
точек были получены аналитические решения соответствующих граничных задач. Метод возмущений k·p применялся 
для оценки роли наведённых деформаций в изменении зонной структуры материала. Показано, что изменение ширины 
запрещенной зоны явно зависит от формы внедренной квантовой точки. Было исследовано влияние наведённых квантовыми 
точками деформаций на электрополяризацию материала, обладающего пьезоэлектрическими свойствами. Обнаружено, что 
наибольший скачок плотности электрического заряда достигается вблизи вершины конического включения.

Ключевые слова: III-нитридные полупроводниковые нанопроволоки; квантовые точки; упругие поля; запрещенная зона; 
 электрополяризация


